Νέες μοριακές διαγνωστικές μέθοδοι και βιοδείκτες για την Πλάγια Μυατροφική Σκλήρυνση (ALS)
Abstract
Η πλάγια μυατροφική σκλήρυνση ή αλλιώς νόσος του κινητικού νευρώνα (ALS) είναι μια σπάνια διαταραχή η οποία κατατάσσεται σε δύο μορφές: την οικογενή, με ποσοστό 5-10 % των περιπτώσεων, και την σποραδική. Αξίζει να σημειωθεί η κρισιμότητα της έγκαιρης διάγνωση της για την αποτελεσματικότητα της θεραπείας, η οποία βασίζεται σε μια κλινική αξιολόγηση που απαιτεί περίπου 12 μήνες. Συνέπεια αυτού αποτελεί η καθυστερημένη χορήγηση των κατάλληλων φαρμάκων, με αποτέλεσμα, νέες μέθοδοι για την διάγνωση της ALS να κρίνονται αναγκαίες. O έλεγχος παθογόνων γονίδιων που σχετίζονται με την ALS, αποτελεί ήδη διαγνωστικό εργαλείο. Ωστόσο, δεν μπορεί να χρησιμοποιηθεί σε προσυμπτωματικό στάδιο. Επομένως απαιτούνται νέοι βιοδείκτες οι οποίοι θα ευνοήσουν την έγκαιρη ανίχνευση. Συγκεκριμένα, τα λιπίδια εμφανίζονται ως πολλά υποσχόμενοι βιοδείκτες για τον πληθυσμιακό έλεγχο και για την παρακολούθηση της εξέλιξης της νόσου. Επιπλέον, η γενετική ανάλυση μπορεί να βοηθήσει στην πρόβλεψη της εξέλιξης της νόσου μέσω της ανάλυσης γονιδίων που την τροποποιούν όπως, το EPHA4 και το CHGB. Στο παρόν κείμενο αναλύονται νέες τεχνικές οι οποίες είναι δυνατό να εφαρμοστούν για την διάγνωση της ALS.
References
• Abe, K., Aoki, M., Tsuji, S., Itoyama, Y., Sobue, G., Togo, M., Yoshino, H. (2017a). Safety and efficacy of edaravone in well-defined patients with amyotrophic lateral sclerosis: A randomized, double-blind, placebocontrolled trial. Lancet Neurology, 16(7), 505–512.
• Abe, K., Ohkubo, T., & Yokota, T. (2017b). TDP-43 in the skin of amyotrophic lateral sclerosis patients. Journal of Medical and Dental Sciences, 64(1), 9–17.
• Ahmeti, K. B., Ajroub-Driss, S., Al-Chalabi, A., Andersen, P. M., Armstrong, J., Birve, A., Zheng, J. G. (2013). Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1. Neurobiology of Aging, 34(1), 357.e7–19.
• Al-Chalabi, A., Calvo, A., Chio, A., Colville, S., Ellis, C. M., Hardiman, O., Pearce, N. (2014). Analysis of amyotrophic lateral sclerosis as a multistep process: A population-based modeling study. Lancet Neurology, 13(11), 1108–1113.
• Al-Saif, A., Al-Mohanna, F., & Bohlega, S. (2011). A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Annals of Neurology, 70(6), 913–919.
• Andersen, P. M., Nilsson, P., Ala-Hurula, V., Käranen, M.-L., Tarvainen, I., Haltia, T., Marklund, S. L. (1995). Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nature Genetics, 10(1), 61–66.
• Andersen, P. M., Nilsson, P., Keränen, M. L., Forsgren, L., Hägglund, J., Ronnevi, L. O., Marklund, S. L. (1997). Phenotypic heterogeneity in motor neuron disease patients with CuZnsuperoxide dismutase mutations in Scandinavia. Brain, 120(Pt 10), 1723–1737.
• Balendra, R., Moens, T. G., & Isaacs, A. M. (2017). Specific biomarkers for C9orf72 FTD/ALS could expedite the journey towards effective therapies. EMBO Molecular Medicine, 9(7), 853–855.
• Bannwarth, S., Ait-El-Mkadem, S., Chaussenot, A., Genin, E. C., LacasGervais, S., Fragaki, K., … Paquis Flucklinger, V. (2014). A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain, 137(Pt 8), 2329–2345.
• Benatar, M., Wuu, J., Andersen, P. M., Lombardi, V., & Malaspina, A. (2018). Neurofilament light: A candidate biomarker of pre-symptomatic ALS and phenoconversion. Annals of Neurology, 84(1), 130–139.
• Blasco, H., Corcia, P., Veyrat-Durebex, C., Coutadeur, C., Fournier, C., Camu, W., Praline, J. (2011a). The P413L chromogramin B variation in French patients with sporadic amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 12(3), 210–214.
• Blasco, H., Vevrat-Durebex, C., Bocca, C., Patin, F., Vourc’h, P., Kouassi Nzoughet, J., Reynier, P. (2017). Lipidomics reveals cerebrospinalfluid signatures of ALS. Scientific Reports, 7(1), 17652.
• Blasco, H., Vourc’h, P., Nadjar, Y., Ribourtout, B., Gordon, P. H., Guettard, Y. O., Praline, J. (2011b). Association between divalent metal transport1 encoding gene (SLC11A2) and disease duration in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 303(1-2), 124–127.
• Blauwendraat, C., Faghri, F., Pihlstrom, L., Geiger, J. T., Elbaz, A., Lesaga, S., Scholz, S. W. (2017). NeuronChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 57, 247.e9–e247.
• Blokhuis, A. M., Groen, E. J. N., Koppers, M., van den Berg, L., & Pasterkamp, J. (2013). Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathologica, 125(6), 777–794.
• Bowling, A. C., Schulz, J. B., Brown, R. H. Jr., & Beal, M. F. (1993). Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. Journal of Neurochemistry, 61(6), 2322–2325.
• Brenner, D., Yilmaz, R., Müller, K., Grehl, T., Petri, S., Meyer, T., Weishaupt, J. H. (2018). Hot-spot KIF5A mutations cause familial ASL. Brain, 141(3),688–697.
• Brown, R. H., & Al-Chalabi, A. (2017). Amyotrophic lateral sclerosis. The New England Journal of Medicine, 377(2), 162–172.
• Cardona, A. E., Pioro, E. P., Sasse, M. E., Kostenko, V., Cardona, S. M., Dijkstra, M., Ransohoff, R. M. (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 9(7), 917–924.
• Chance, P. F., Rabin, B. A., Ryan, S. G., Ding, Y., Scavina, M., Crain, B., Cornblath, D. R. (1998). Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. American Journal of Human Genetics, 62(3), 633–640.
• Chen, S., Sayana, P., Zhang, X., & Le, X. (2013). Genetics of amyotrophic lateral sclerosis: An update. Molecular Neurodegeneration, 8, 28.
• Chia, R., Chiò, A., & Traynor, B. J. (2017). Novel genes associated with amytrophic lateral sclerosis: Diagnostic and clinical implications. Lancet Neurology, 179(1), 94–102.
• Chio, A., Calvo, A., Ilardi, A., Cavallo, E., Moglia, C., Mutani, R., Mora, G. (2009). Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology, 73(20), 1681–1685.
• Chow, C. Y., Landers, J. E., Bergren, S. K., Sapp, P. C., Grant, A. E., Jones, J. M., Meisler, M. H. (2009). Deleterious variants of FIG4, a phosphinositide phosphatase, in patients with ALS. American Journal of Human Genetics, 84(1), 85–88.
• Cirulli, E. T., Lasseigne, B. N., Petrovski, S., Sapp, P. C., Dion, P. A., Leblond, C. S., Goldstein, D. B. (2015). Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 347(6229), 1436– 1441.
• Clos, A. L., Kayed, R., & Lasagna-Reeves, C. A. (2012). Association of skin with the pathogenesis and treatment of neurodegenerative amyloidosis. Frontiers in Neurology, 3, 5.
• Codron, P., Cassereau, J., Vourc’h, P., Veyrat-Durebex, C., Blasco, H., Kane, S., Chevrollier, A. (2018). Primary fibroblasts derived from sporadic amyotrophic lateral sclerosis patients do not show ALS cytological lesions. Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration, 19(5–6), 446–456.
• Costa, J., & de Carvalho, M. (2016). Emerging molecular biomarker targets for amyotrophic lateral sclerosis. Clinica Chimica Acta, 455, 7–14.
• Couthouis, J., Hart, M. P., Shorter, J., DeJesus-Hernandez, M., Erion, R., Oristano, R., Gitler, A. D. (2011). A yeast functional screen predicts new 370 PAMPALAKIS ET AL. candidate ALS disease genes. Proceedings of the National Academy of Sciences of the United States of America, 108(52), 20881–20890.
• Cruz, P. T. (2018). Edaravone (Radicava). Pharmacy and Therapeutics, 43(1), 25–28.
• Cudkowicz, M. E., McKenna-Yasek, D., Sapp, P. E., Chin, W., Geller, B., Hayden, D. L., Brown, R. H. (1997). Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Annals of Neurology, μ41(2), 210–221.
• Dardiotis, E., Siokas, V., Sokratous, M., Tsouris, Z., Michalopoulou, A., Andravizou, A., Hadjigeorgiou, G. M. (2018). Genetic polymorphisms in amyotrophic lateral sclerosis: Evidence for implication in detoxification pathways of environmental toxicants. Environment International, 116, 122–135.
• DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M.,Rutherford, N. J., Rademakers, R. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72(2), 245–256.
• Deng, H. X., Chen, W., Hong, S. T., Boycott, K. M., Gorrie, G. H., Siddique, N., Siddique, T. (2011). Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature, 477(7363), 211–215.
• Diekstra, F. P., van Vught, P.W. J., van Rheenen,W., Koppers,M., Pasterkamp, R. J., van Es, M. A., Veldink, J. H. (2012). UNC13A is a modifier of survival in amyotrophic lateral sclerosis. Neurobiology of Aging, 33(3), 630.e3–e8.
• Dion, P. A., Daoud, H., & Rouleau, G. A. (2009). Genetics of motor neuron disorders: New insights into pathogenic mechanisms. Nature Reviews Genetics, 10(11), 769–782.
• Dorst, J., Kühnlein, P., Hendrich, C., Kassubek, J., Sperfeld, A. D., & Ludolph, C. (2011). Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. Journal of Neurology, 258(4), 613–617.
• Dupuis, L., Corcia, P., Fergani, A., Gonzalez De Aguilar, J. L., BonnefontRousselot, D., Meininger, V. (2008). Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology, 70(13), 1004–1009.
• Dupuis, L., Oudart, H., René, F., Gonzalez de Aguilar, J. L., & Loeffler, J. P. (2004). Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: Benefit of a high-energy diet in a transgenic mouse model. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11159–11164.
• Elden, A. C., Kim, H. J., Hart, M. P., Chen-Plotkin, A. S., Johnson, B. S., Fang, X., Gitler, A. D. (2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature, 466(7310), 1069–1075.
• Eschbach, J., Schwalenstöcker, B., Soyal, S. M., Bayer, H., Wiesner, D., Akimoto, C., Weydt, P. (2013). PGC-1a is a male-specific disease modifier of human and experimental amyotrophic lateral sclerosis. Human Molecular Genetics, 22(17), 3477–3484.
• Fecto, F., Yan, J., Vemula, S. P., Liu, E., Yang, Y., Chen,W., Siddique, T. (2011). SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Archives of Neurology, 68(11), 1440–1446.
• Feneberg, E., Oeckl, P., Steinacker, P., Verde, F., Barro, C., Van Damme, P., Otto, M. (2018a). Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis. Neurology, 90(1), e22– e30.
• Feneberg, E., Gray, E., Ansorge, O., Talbot, K., & Turner, M. R. (2018b). Towards a TDP-43-based biomarker for ALS and FTLD. Molecular Neurobiology, 55(10), 7789–7801.
• Ferraiuolo, L., Kirby, J., Grierson, A. J., Sendtner, M., & Shaw, P. J. (2011). Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nature Reviews Neurology, 7(11), 616–630.
• Figlewicz, D. A., Krizus, A., Martinoli, M. G., Meininger, V., Dib, M., Rouleau, G. A., & Julien, J. P. (1994). Variants of the heavy neurofilament subunit are associated with the development of amyotrophic laterals sclerosis. Human Molecular Genetics, 3(10), 1757–1761.
• Fogh, I., Lin, K., Tiloca, C., Rooney, J., Gellera, C., Diekstra, F. P., Powell, J. (2016). Association of a locus in the CAMTA1 gene with survival in patients with sporadic amyotrophic lateral sclerosis. JAMA Neurology, 73(7), 812–820.
• Gitler, A. D., & Tsuiji, H. (2016). There has been an awakening: Emerging mechanisms of C9orf72 mutations in FTD/ALS. Brain Research, 1647, 19–29.
• Gratten, J., Zhao, Q., Benyamin, B., Garton, F., He, J., Leo, P. J., Fan, D. (2017). Whole-exome sequencing in amyotrophic lateral sclerosis suggest NEK1 is a risk gene in Chinese. Genome Medicine, 9, 97.
• Greenway, M. J., Andersen, P. M., Russ, C., Ennis, S., Cashman, S., Donaghy, C., Hardiman, O. (2006). ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis.Nature Genetics, 38(4), 411– 413.
• Gross-Louis, F., Andersen, P. M., Dupre, N., Urushitani, M., Dion, P., Souchon, F., Julien, J. P. (2009). Chromogranin B P413L variant as risk factor and modifier of disease onset for amyotrophic lateral sclerosis. Proceeding of the National Academy of Sciences of the United States of America, 106(51), 21777–21782.
• Hadano, S., Hand, C. K., Osuga, H., Yanagisawa, Y., Otomo, A., Devon, R. S., Ikeda, J. E. (2001). A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nature Genetics, 29(2), 166–173.
• Hand, C. K., Khoris, J., Salachas, F., Gros-Louis, F., Lopes, A. A., MayeuxPortas, V., Rouleau, G. A. (2002). A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. American Journal of Human Genetics, 70(1), 251–256.
• Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G., Robberecht, W., van den Berg, L. H. (2017). Amyotrophic lateral sclerosis. Nature Reviews Disease Primers, 3, 17071.
• He, X., Zhang, L., Yao, X., Hu, J., Yu, L., Jia, H., Xu, Y. (2013). Association studies of MMP-9 in Parkinson’s disease and amyotrophic lateral sclerosis. PLoS One, 8(9), 1–5.
• Henriques, A., Croixmarie, V., Bouscary, A., Mosbach, A., Keime, C., BoursierNevret, C., Loeffler, J. P. (2018). Sphingolipid metabolism is dysregulated at transcriptomic and metabolic levels in the spinal cord of an animal model of amyotrophic lateral sclerosis. Frontiers in Molecular Neuroscience, 10, 433.
• Henriques, A., Croixmarie, V., Priestman, D. A., Rosenbohm, A., DirrigGrosch, S., Boursier-Neyret, C., De Aguilar, J. L. G. (2015). Amyotrophic lateral sclerosis and denervation alter sphingolipids and upregulate glucosylceramide synthase. Human Molecular Genetics, 24(25), 7390–7405.
• Hosokawa, M., Arai, T., Yamashita, M., Tsuji, H., Nonaka, T., MasudaSuzukake, M., Akiyama, H. (2014). Differential diagnosis of amyotrophic lateral sclerosis from Guillain-Barré syndrome by quantitative determination of TDP-43 in cerebrospinal fluid. The International Journal of Neuroscience, 124(5), 344–349.
• Huang, R., Guo, X., Chen, X., Zheng, Z., Wei, Q., Cao, B., Shang, H. (2015). The serum lipid profiles of amyotrophic lateral sclerosis patients: A study from south-west China and a meta-analysis. Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration, 16(5–6), 359– 365.
• Ivansson, E. L., Megquier, K., Kozyrev, S. V., Murén, E., Körberg, I. B., Swofford, R., Lindblad-Toh, K. (2016). Variants within the SP110 nuclear body protein modify risk of canine degenerative myelopathy. Proceedings of the National Academy of Science of the United States of America, 113(22), E3091–E3100. PAMPALAKIS ET AL. 371
• Jia, R., Shepheard, S., Jin, J., Hu, F., Zhao, X., Xue, L., Dang, J. (2017). Urinary extracellular domain of neurotrophin receptor p75 as a biomarker for amyotrophic lateral sclerosis in a Chinese cohort. Scientific Reports, 7(1), 5127.
• Johnson, J. O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V. M., Trojanowski, J. Q., Traynor, B. J. (2010). Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 68(5), 857– 864.
• Johnson, J. O., Pioro, E. P., Boehringer, A., Chia, R., Feit, H., Renton, A. E., Traynor, B. J. (2014). Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nature Neuroscience, 17(5), 664–666.
• Junttila, A., Kuvaja, M., Hartikainen, P., Siloaho, M., Helisalmi, S., Moilanen,V., Herukka, S. K. (2016). Cerebrospinal fluid TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis patients with and without the C9ORF72 hexanucleotide expansion. Dementia and Geriatric Cognitive Disorders Exta, 6(1), 142–149.
• Kaneb, H. M., Folkmann, A. W., Belzil, V. V., Jao, L. E., Leblond, C. S., Girard, S. L., Dion, P. A. (2015). Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis. Human Molecular Genetics, 24(5), 1363–1373.
• Kasai, T., Tokuda, T., Ishigami, N., Sasayama, H., Foulds, P., Mitchell, D. J., Nakagawa, M. (2009). Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathologica, 117(1), 55–62.
• Kenna, K. P., Van Doormaal, P. T., Dekker, A. M., Ticozzi, N., Kenna, B. J., Diekstra, F. P., Landers, J. E. (2016). NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 48(9), 1037–1042.
• Kim, S. M., Kim, H., Kim, J. E., Park, K. S., Sung, J. J., Kim, S. H., & Lee, K. W. (2011). Amyotrophic lateral sclerosis is associated with hypolipidaemia at the presymptomatic stage in mice. PLoS One, 6(3), e17985.
• Kim, H. J., Kim, N. C., Wang, Y. D., Scarborough, E. A., Moore, J., Diaz, Z., Taylor, J. P. (2013). Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature, 495(7442), 46773.
• Kim, S.-M., Noh, M-Y., Kim, H., Cheon, S.-Y., Lee, K. M., Lee, J., Kim, S. H. (2017). 25-hydroxycholesterol is involved in the pathogenesis of amyotrophic lateral sclerosis. Oncotarget, 8(7), 11855–11867.
• Landers, J. E., Melki, J., Meininger, V., Glass, J. D., van den Berg, L. H., van Es, M. A., Brown, R. H. Jr (2009). Reduced expression of the kinesinassociated protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 106(22), 9004–9009.
• Lehnert, S., Costa, J., de Carvalho, M., Kirby, J., Kuzma-Kozakiewicz, M., Morelli, C., Otto, M. (2014). Multicentre quality controls evaluation of different biomarker candidates for amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration, 15(5–6), 344–350.
• Li, D., Shen, D., Tai, H., & Cui, L. (2016). Neurofilaments in CSF as diagnostic biomarkers in motor neuron disease: A meta-analysis. Frontiers in Aging Neuroscience, 8, 290.
• Lopez-Lopez, A., Gamez, J., Syriani, E., Morales, M., Salvado, M., Rodríguez, M. J., Vidal-Taboada, J. M. (2014). CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. Plos One, 9(5), e96528.
• López-López, A., Gelpi, E., Lopategui, D. M., & Vidal-Taboada, M. (2018). Association of the CX3CR1-V249I variant with neurofibrillary pathology progression in late-onset Alzheimer›s disease. Molecular Neurobiology, 55(3), 2340–2349.
• Louvel, E., Hugon, J., & Doble, A. (1997). Therapeutic advances in amyotrophic lateral sclerosis. Trends in Pharmacological Sciences, 18(6), 196–203.
• Mackenzie, I. R., Nicholson, A. M., Sarkar, M., Messing, J., Purice, M. D., Pottier, C, Rademakers, R. (2017). TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron, 95(4), 808–816.
• Mandrioli, J., Rosi, E., Fini, N., Fasano, A., Raggi, S., Fantuzzi, A. L., & Bedogni, G. (2017). Changes in routine laboratory tests and survival in amyotrophic lateral sclerosis. Neurological Sciences, 38(12), 2177-2182.
• Mariosa, D., Hammar, N., Malmstrom, H., Ingre, C., Jungner, I., Ye, W., Walldius, G. (2017). Blood biomarkers of carbohydrate, lipid, and apolipoprotein metabolisms and risk of amyotrophic lateral sclerosis: A more than 20-year follow-up of the Swedish AMORIS cohort. Annals of Neurology, 81(5), 718–728.
• Maruyama, H., Morino, H., Ito, H., Izumi, Y., Kato, H., Watanabe, Y., Kawakami, H. (2010). Mutations of optineurin in amyotrophic lateral sclerosis. Nature, 465(7295), 223–226.
• Mitchell, J. D. (2000). Amyotrophic lateral sclerosis: Toxins and environment. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1(4), 253–250.
• Mitchell, J., Paul, P., Chen, H. J., Morris, A., Payling, M., Falchi, M., de Bellroche, J. (2010). Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7556–7561.
• Mitropoulos, K., Katsila, T., Patrinos, G. P., & Pampalakis, G. (2018). Multiomics for biomarker discovery and target validation in biofluids for amyotrophic lateral sclerosis diagnosis. OMICS, 22(1), 52–64.
• Mitropoulos, K., Merkouri Papadima, E., Xiromerisiou, G., Balasopoulou, A., Charalampidou, K., Patrinos, G. P. (2017). Genomic variants in the FTO gene are associated with sporadic amyotrophic lateral sclerosis in Greek patients. Human Genomics, 11(1), 30.
• Nails, M. A., Bras, J., Hernandez, D. G., Keller, M. F., Majounie, E., Renton, E., Singleton, A. B. (2015). NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiology of Aging, 36(3), 1605.e7–e12.
• Neumann, M., Kwong, L. K., Lee, E. B., Kremmer, E., Flatley, A., Xu, Y., Lee, V. M. (2009). Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathologica, 117(2), 137–149.
• Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M.C., Chou, T. T., Lee, V. M. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796), 130–134.
• Nishimura, A. L., Mitne-Neto, M., Silva, H. C., Richieri-Costa, A., Middleton, S., Cascio, D., Zatz, M. (2004). A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. American Journal of Human Genetics, 75(5),822–831.
• Noto, Y., Shibuya, K., Sato, Y., Kanai, K., Misawa, S., Sawai, S., Kuwabara, S. (2011). Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: Specificity, sensitivity, and a possible prognostic value. Amyotrophic Lateral Sclerosis, 12(2), 140–143.
• Oberstadt, M., Claen, J., Arendt, T., & Holzer, M. (2018). TDP-43 and cytoskeletal proteins in ALS. Molecular Neurobiology, 55(4), 3143–3151.
• Oeckl, P., Jardel, C., Salachas, F., Lamari, F., Andersen, P. M., Bowser, R., Otto, M. (2016). Multicenter validation of CSF neurofilaments as diagnostic biomarkers. Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration, 17(5–6), 404–413.
• Ohta, Y., Soucy, G., Phaneuf, D., Audet, J. N., Gros-Louis, F., Rouleau, G. A., Julien, J. P. (2016). Sex-dependent effects of chromogranin B P413L allelic variant as disease modifier in amyotrophic lateral sclerosis. Human Molecular Genetics, 25(21), 4771–4786. 372 PAMPALAKIS ET AL.
• Oketa, Y., Higashida, K., Fukasawa, H., Tsukie, T., & Ono, S. (2013). Abundant FUS-immunoreactive pathology in the skin of sporadic amyotrophic lateral sclerosis. Acta Neurologica Scandinavica, 128(4), 257–264. Orlacchio, A., Babalini, C., Borreca, A., Patrono, C., Massa, R., Basaran, S., Kawarai, T. (2010). SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain, 133(Pt 2), 591– 598.
• Paré, B., & Gros-Louis, F. (2017). Potential skin involvement in ALS: Revisiting Charcot’s observation-a review of skin abnormalities in ALS. Reviews in Neurosciences, 28(5), 551–572.
• Paré, B., Touzel-Deschênes, L., Lamontagne, R., Lamarre, M. S., Scott, F. D., Khuong, H. T., Gros-Louis, F. (2015). Early detection of structural abnormalities and cytoplasmic accumulation of TDP-43 in tissueengineered skin derived from ALS patients. Acta Neuropathologica Communications, 3, 5 (1–12).
• Parkinson, N., Ince, P. G., Smith, M. O., Highley, R., Skibinski, G., Andersen, P. M., Fisher, E. M. (2006). ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology, 67(6), 1074–1077.
• Puls, I., Jonnakuty, C., LaMonte, B. H., Holzbaur, E. L., Tokito, M., Mann, E., Fischbeck, K. H. (2003). Mutant dynactin in motor neuron disease. Nature Genetics, 33(4), 455–456.
• Renton, A. E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J. R., Traynor, B. J. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 72(2), 257–268.
• Ricci, C., Battistini, S., Avemaria, F., Benigni, M., Tarlarini, C., Giannini, F., Penco, S. (2015). Lack of relationship between the P413L chromogranin B variant and a SALS Italian cohort. Gene, 568(2), 186–189.
• Robelin, L., & De Aguilar, J. L. (2014). Blood biomarkers for amytrophic lateral sclerosis: Myth of reality? Biomed Research International, 2014, 525097.
• Sapp, P. C., Hosler, B. A., McKenna-Yasek, D., Chin, W., Gann, A., Genise, H., Brown, R. H. Jr. (2003). Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. American Journal of Human Genetics, 73(2), 397–403.
• Sawada, H. (2017). Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opinion on Pharmacotherapy, 18(7), 735–738.
• Shepheard, S. R., Chataway, T., Schultz, D. W., Rush, R. A., & Rogers, M. L. (2014). The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis. PLoS One, 9(1), e87398.
• Shepheard, S. R., Wuu, J., Cardoso, M., Wiklendt, L., Dinning, P. G., Chataway, T., Benatar, M. (2017). Urinary p75ECD: A prognostic, disease progression, and pharmacodynamic biomarker in ALS. Neurology, 88(12), 1137–1143.
• Simpson, C. L., Lemmens, R., Miskiewicz, K., Broom, W. J., Hansen, V. K., van Vught, P. W., Al-Chalabi, A. (2009). Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Human Molecular Genetics, 18(3), 472–481.
• Smith, B. N., Ticozzi, N., Fallini, C., Gkazi, A. S., Topp, S., Kenna, K. P., Landers, J. E. (2014). Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron, 84(2), 324–331.
• Sproviero W, Shatunov A, Stahl D, Shoai M, van Rheenen W, Jones A. R., Al-Chalabi, A (2017). ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiology of Aging, 51, 178.e1–e178.e9.
• Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., Shaw, E. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 319(5870), 1668–1672.
• Steinacker, P., Hendrich, C., Sperfeld, A. D., Jesse, S., von Arnim, C. A., Lehnert, S., Otto, M. (2008). TDP-43 in cerebrospinal fluid of patients with frontotemporal lobal degeneration and amyotrophic lateral sclerosis. Archives of Neurology, 65(11), 1481–1487.
• Suzuki, M., Mikami, H., Watanabe, T., Yamano, T., Yamazaki, T., Nomura, M., Ono, S. (2010). Increased expression of TDP-43 in the skin of amyotrophic lateral sclerosis. Acta Neurologica Scandinavica, 122(5), 367– 372.
• Takahashi, Y., Fukuda, Y., Yoshimura, J., Toyoda, A., Kurppa, K., Moritoyo, H., Tsuji, S. (2013). ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. American Journal of Human Genetics, 93(5), 900–905.
• Trostchansky, A., Mastroggiovani, M., Miquel, E., Rodriguez-Bottero, S., Cassina, P., & Rubbo, H. (2016). Lipidomic analysis in amyotrophic lateral sclerosis (ALS): Looking for footprints of disease onset and progression. Free Radical Biology and Medicine, 100(Supplement), S68–S69.
• Tunca, C., Akçimen, F., Co¸skun, C., Gündogdu-Eken, A., Kocoglu, C., Cevik, B., Ba¸sak, A. N. (2018). ERLIN1 mutations cause teenage-onset slowly progressive ALS in a large Turkish pedigree. European Journal of Human Genetics, 26(5), 745–748.
• Van Hoecke, A., Schoonaert, L., Lemmens, R., Timmers, M., Staats, K. A., Laird, A. S., Robberecht, W. (2012). EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nature Medicine, 18(9), 1418–1422.
• Van Rheenen, W., Shatunov, A., Dekker, A. M., McLaughlin, R. L., Diekstra, F. P., Pulit, S. L., Veldink, J. H. (2016). Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 48(9), 1043–1048.
• Vance, C., Rogelj, B., Hortobágyi, T., De Vos, K. J., Nishimura, A. L., Sreedharan, J., Shaw, C. E. (2009). Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science, 323(5918), 1208–1211.
• Vejux, A., Namsi, A., Nury, T., Moreau, T., & Lizard, G. (2018). Biomarkers of amyotrophic lateral sclerosis: Current status and interest of oxysterols and phytosterols. Frontiers in Molecular Neuroscience, 11, 12.
• Verstraele, E., Kuiperij, H. B., van Blitterswijk, M. M., Veldink, J. H., Schelhaas, H. J., van den Berg, L. H., & Verbeek, M. M. (2012). TDP-43 plasma levels are higher in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 13(5), 446–451.
• Vidal-Taboada, J. M., Pugliese, M., Salvadó, M., Gámez, J., Mahy, N., & Rodríguez, M. J. (2018). KATP channel expression and genetic polymorphisms associated with progression and survival in amyotrophic lateral sclerosis. Molecular Neurobiology, 55(10), 7962–7972.
• Wang, X., Zhou, S., Ding, X., Ma, M., Zhang, J., Zhou, Y., Teng, J. (2015). Activation of ER stress and autophagy induced by TDP-43 A315T as pathogenic mechanism and the corresponding histological changes in skin as potential biomarker for ALS with the mutation. International Journal of Biological Sciences, 11(10), 1140–1149.
• Wenk, M. R. (2005). The emerging field of lipidomics. Nature Reviews Drug Discovery, 4(7), 594–610.
• Weydt, P., Oeckl, P., Huss, A., Müller, K., Volk, A. E., Kuhle, J., Otto, M. (2016). Neurofilaments levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Annals of Neurology, 79(1), 152–158.
• Williams, K. L., Topp, S., Yang, S., Smith, B., Fifita, J. A., Warraich, S. T., Blair, P. (2016). CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nature Communications, 7, 11253.
• Williams, S. M., Khan, G., Harris, B. T., Ravis, J., & Sierks, M. R. (2017). TDP43 protein variants as biomarkers in amyotrophic lateral sclerosis. BMC Neuroscience, 18(1), 20.
• Wu, C. H., Fallini, C., Ticozzi, N., Keagle, P. J., Sapp, P. C., Piotrowska, K., Landers., J. E. (2012). Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature, 488(7412), 499–503. PAMPALAKIS ET AL. 373
• Wuolikainen, A., Acimovic, J., Lövgren-Sandblom, A., Parini, P., Andersen, P. M., & Björkhem, I. (2014). Cholesterol, oxysterol, triglyceride, and coenzyme Q homeostasis in ALS. Evidence against the hypothesis that elevated 27-hydroxycholesterol is a pathogenic factor. PLoS One, 9(11), e113619.
• Xu, Z., Henderson, R. D., David, M., & McCombe, P. A. (2016). Neurofilaments as biomarkers for amyotrophic lateral sclerosis: A systematic review and meta-analysis. PLoS One, 11(10), e0164625.
• Yang, C., Tan, W., Whittle, C., Qiu, L., Cao, L., Akbarian, S., & Xu, Z. (2010). The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS One, 5(12), e15878.
• Yang, J. W., Kim, S. M., Kim, H. J., Kim, J. E., Park, K. S., Kim, S. H., Sung, J. J. (2013). Hypolipidemia in patients with amyotrophic lateral sclerosis: A possible gender difference? Journal of Clinical Neurology, 9(2), 125– 129.
• Yang, Y., Hentati, A., Deng, H. X., Dabbagh, O., Sasaki, T., Hirano, M., Siddique, T. (2001). The gene encoding alsin, a protein with three guaninenucleotide exchange factor domains is mutated in a form of recessive amyotrophic lateral sclerosis. Nature Genetics, 29(2), 160–165.
• Yu, B., & Pamphlett, R. (2017). Environmental insults: Critical triggers for amyotrophic lateral sclerosis. Translational Neurodegeneration, 6, 15.
• Yuan, A., Rao, M. V., Veeranna, & Nixon, R. A. (2017). Neurofilaments and neurofilament proteins in health and disease.Cold Spring Harbor Perspectives in Biology, 9(4), pii: A018309.
• Zoing, M. C., Burke, D., Pamphlett, R., & Kiernan, M. C. (2006). Riluzole therapy for motor neurone disease: An early Australian experience (1996– 2002). Journal of Clinical Neuroscience, 13(1), 78–83.
• Zou, Z. Y., Zhou, Z. R., Che, C. H., Liu, C. Y., He, R. L., & Huang, H. P. (2017). Genetic epidemiology of amyotrophic lateral sclerosis: A systematic review and meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 88(7), 540–549.w