Γενετική και Ανεπιθύμητες Ενέργειες φαρμάκων

  • Δήμητρα Δεδούση
  • Κωνσταντίνα Καρλή
  • Μαρία-Δέσποινα Τσατσαρώνη
  • Παναγιώτης Χ. Μπαντούνας
  • Γεώργιος Π. Πατρινός
Keywords: Ανεπιθύμητες ενέργειες, Φαρμακογονιδιωματική, μεταβολισμός φαρμάκων, τοξικότητα φαρμάκων, γονοτυπική ανάλυση

Abstract

Τα τελευταία χρόνια παρατηρείται ολοένα και μεγαλύτερη αύξηση του ενδιαφέροντος της επιστημονικής κοινότητας αναφορικά με τις ανεπιθύμητες ενέργειες από φάρμακα (ΑΕ). Αν και οι περισσότερες από αυτές είναι δοσοεξαρτώμενες και προβλέψιμες (τύπος Α), υπάρχει άλλη μια κατηγορία αντιδράσεων σε φάρμακα οι οποίες είναι πιο σπάνιες, ιδιόμορφες και χαρακτηρίζονται από αυξημένο ποσοστό θνησιμότητας (τύπος Β). Οι αντιδράσεις τύπου Β έχουν έντονο γενετικό χαρακτήρα και η εμφάνιση τους σχετίζεται με αλληλόμορφα γονιδίων ιστοσυμβατότητας (HLA, Human Leukocyte Antigen) με γονίδια ενζύμων που συμμετέχουν στον μεταβολισμό φαρμάκων, με γονίδια μεταφορέων φαρμάκων και με διάφορους επιγενετικούς παράγοντες. Η σοβαρότητα των ΑΕ που εντάσσονται στον τύπο Β, όπως η φαρμακευτική ηπατοτοξικότητα και η τοξική επιδερμική νεκρόλυση, τονίζει την ανάγκη άμεσης αντιμετώπισης του προβλήματος.  Το συγκεκριμένο άρθρο εστιάζει στην παρουσίαση του γενετικού υπόβαθρου των ανεπιθύμητων ενεργειών τύπου Β καθώς και στον ρόλο της επιστήμης της φαρμακογονιδιωματικής, η οποία βασιζόμενη στη γενετική δομή κάθε ατόμου και με την αξιοποίηση σύγχρονων μεθόδων μοριακής βιολογίας θα συμβάλλει σε μεγάλο βαθμό, στην μείωση των περιστατικών ΑΕ.

Author Biographies

Δήμητρα Δεδούση

Πανεπιστήμιο Πατρών, Σχολή Επιστημών Υγείας, Τμήμα Φαρμακευτικής, Πάτρα

Κωνσταντίνα Καρλή

Πανεπιστήμιο Πατρών, Σχολή Επιστημών Υγείας, Τμήμα Φαρμακευτικής, Πάτρα

Μαρία-Δέσποινα Τσατσαρώνη

Πανεπιστήμιο Πατρών, Σχολή Επιστημών Υγείας, Τμήμα Φαρμακευτικής, Πάτρα

Παναγιώτης Χ. Μπαντούνας

Πανεπιστήμιο Πατρών, Σχολή Επιστημών Υγείας, Τμήμα Φαρμακευτικής, Πάτρα

Γεώργιος Π. Πατρινός

Πανεπιστήμιο Πατρών, Σχολή Επιστημών Υγείας, Τμήμα Φαρμακευτικής, Πάτρα

References

1. Coleman JJ, Pontefract SK. Adverse drug reactions. Clin Med (Lond) 2016; 16(5): 481–485.
2. Wang CW, Chung WH, Hung SI. Genetics of Adverse Drug Reactions. eLS 2017: 1-10.
3. Giardina C, Cutroneo PM, Mocciaro E, et al. Adverse Drug Reactions in Hospitalized Patients: Results of the FORWARD (Facilitation of Reporting in Hospital Ward) Study. Front Pharmacol 2018; 9: 350.
4. Lazarou J, Corey PN, Pomeranz B. Incidence of adverse drug reactions in hospitalized patients: A meta-analysis of prospective studies. JAMA 1998; 279(15): 1200-1205.
5. Alomar M, Palaian S, Al-tabakha MM. Pharmacovigilance in perspective: drug withdrawals, data mining and policy implications. F1000Res 2019; 8: 2109.
6. Shibbiru TΜ, Tadesse F. Adverse Drug Reactions: An Overview. Journal of Medicine, Physiology and Biophysics 2016; 23: 7-14.
7. Brahma DK, Wahlang JB, Marak MD, Sangma MC. Adverse drug reactions in the elderly. J Pharmacol Pharmacother 2013; 4(2): 91–94.
8. Lobo MG, Pinheiro SM, Castro JG, Momenté VG, Pranchevicius MC. Adverse drug reaction monitoring: Support for pharmacovigilance at a tertiary care hospital in Northern Brazil. BMC Pharmacol Toxicol 2013; 14(1): 5.
9. Carr DF, Pirmohamed M. Biomarkers of adverse drug reactions. Exp Biol Med (Maywood) 2017; 243(3): 291-299.
10. Daly AK. Pharmacogenomics of adverse drug reactions. Genome Med 2013; 5(1): 5.
11. Peter JG, Lehloenya R, Dlamini S et al. Severe delayed cutaneous and systemic reactions to drugs: a global perspective on the science and art of current practice. J Allergy Clin Immunol Pract 2017; 5(3): 547–563.
12. Sethuraman G, Sharma VK, Pahwa P, Khetan P. Causative Drugs and Clinical Outcome in Stevens Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN), and SJS-TEN Overlap in Children. Indian J Dermatol 2012; 57(3): 199–200.
13. Harr T, French LE. Toxic epidermal necrolysis and Stevens-Johnson syndrome. Orphanet J Rare Dis 2010; 5: 39.
14. De A., Rajagopalan M, Sarda A, Das S, Biswas P. Drug Reaction with Eosinophilia and Systemic Symptoms: An Update and Review of Recent Literature. Indian J Dermatol 2018; 63(1): 30–40.
15. Choudhary S, McLeod M, Torchia D, Romanelli P. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) Syndrome. J Clin Aesthet Dermatol 2013; 6(6): 31–37.
16. Leise MD, Poterucha JJ, Talwalkar JA. Drug-Induced Liver Injury. Mayo Clin Proc 2014; 89(1): 95-106.
17. Teschke R. Top-ranking drugs out of 3312 drug-induced liver injury cases evaluated by the Roussel Uclaf Causality Assessment Method. Expert Opin Drug Metab Toxicol 2018; 14(11): 1169-1187.
18. Oesch F, Hengstler JG, Arand M. Detoxication Strategy of Epoxide Hydrolase—The Basis for a Novel Threshold for Definable Genotoxic Carcinogens. Nonlinearity Biol Toxicol Med 2004; 2(1): 21-26.
19. Zhou Y, Qin S, Wang K. Biomarkers of drug-induced liver injury. Current Biomarker Findings 2013; 3: 1-9.
20. White KD, Chung WH, Hung SI, Mallal S, Philips EJ. Evolving models of the immunopathogenesis of T cell-mediated drug allergy: The role of host, pathogens, and drug response. J Allergy Clin Immunol 2015; 136(2): 219-234; quiz 235.
21. Li Y, Liu M, Zhang X, Lu Y, Meng J. Switching from allopurinol to febuxostat: efficacy and safety in the treatment of hyperuricemia in renal transplant recipients. Ren Fail 2019; 41(1): 595-599.
22. Yu KH, Yu CY, Fang YF. Diagnostic utility of HLA-B*5801 screening in severe allopurinol hypersensitivity syndrome: an updated systematic review and meta-analysis. Int J Rheum Dis 2017; 20(9): 1057-1071.
23. Jung JW, Song WJ, Kim YS, et al. HLA-B58 can help the clinical decision on starting allopurinol in patients with chronic renal insufficiency. Nephrol Dial Transplant 2011; 26(11): 3567-3572.
24. MedlinePlus. Abacavir. Available via https://medlineplus.gov/druginfo/meds/a699012.html. Accessed October 30, 2020.
25. Ma JD, Lee K, Kuo G. HLA-B*5701 testing to predict abacavir hypersensitivity. PLoS Curr 2010; 2: RRN1203.
26. Phillips EJ, Mallal SA. Active suppression rather than ignorance: tolerance to abacavir-induced HLA-B*57:01 peptide repertoire alteration. J Clin Invest. 2018; 128(7): 2746-2749.
27. Monshi MM, Faulkner L, Gibson A, et al. Human leukocyte antigen (HLA)‐B*57:01‐restricted activation of drug‐specific T cells provides the immunological basis for flucloxacillin‐induced liver injury. Hepatology 2013; 57(2): 727-739.
28. Wuillemin N, Adam J, Fontana S, Krähenbühl S, Pichler WJ, Yerly D. HLA Haplotype Determines Hapten or p-i T Cell Reactivity to Flucloxacillin. J Immunol 2013; 190(10): 4956-4964.
29. Brogden RN, Carmine A, Heel RC, Morley PA, Speight TM, Avery GS. Amoxycillin/Clavulanic Acid: A Review of its Antibacterial Activity, Pharmacokinetics and Therapeutic Use. Drugs 1981; 22(5): 337–362.
30. Lucena MI, Molokhia M, Shen Y, et al. Susceptibility to Amoxicillin-Clavulanate-Induced Liver Injury is Influenced by Multiple HLA Class I and II Alleles. Gastroenterology 2011; 141(1): 338–347.
31. Stephens C, López-Nevot MA, Ruiz-Cabello F, et. al. HLA Alleles Influence the Clinical Signature of Amoxicillin-Clavulanate Hepatotoxicity. PLoS One 2013; 8(7): e68111.
32. Singer JB, Lewitzky S, Leroy E, et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 2010; 42(8): 711-714.
33. EMA. Επιστημονικά πορίσματα και λόγοι ανάκλησης της άδειας κυκλοφορίας που παρουσιάστηκαν από τον ΕΜΕΑ. Παράρτημα ΙΙ. Διαθέσιμο https://www.ema.europa.eu/en/documents/referral/lumiracoxib-article-107-procedures-annex-ii_el.pdf. Εκδόθηκε Δεκέμβριος 13, 2007. Επίσκεψη Δεκέμβριος 7, 2020.
34. Fan WL, Shiao MS, Hui RCY, et al. HLA Association with Drug-Induced Adverse Reactions. J Immunol Res 2017; 2017: 3186328.
35. Hung SI, Chung WH, Wen-Hungb C, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006; 16(4): 297-306.
36. Choo SY. The HLA System: Genetics, Immunology, Clinical Testing, and Clinical Implications. Yonsei Med J 2007; 48(1): 11–23.
37. Man CB, Kwan P, Baum L, et. al. Association between HLA‐B*1502 Allele and Antiepileptic Drug‐Induced Cutaneous Reactions in Han Chinese. Epilepsia 2007; 48(5): 1015-1018.
38. Brown HA, Pereira N. Pharmacogenomic Impact of CYP2C19 Variation on Clopidogrel Therapy in Precision Cardiovascular Medicine. J Pers Med 2018; 8(1): 8.
39. MedlinePlus. Cytochrome P450 family 2 subfamily C member 19. Available via https://medlineplus.gov/genetics/gene/cyp2c19/. Accessed June 9, 2020.
40. Iverson Genetics. Clopidogrel GenoSTAT. Available via http://www.iversongenetics.com/clopidogrel-genoSTAT.html. Accessed May 15, 2020.
41. Ellis KJ, Stouffer GA, McLeod HL, Lee CR. Clopidogrel pharmacogenomics and risk of inadequate platelet inhibition: US FDA recommendations. Pharmacogenomics 2009; 10(11): 1799-1817.
42. Βαλαβανίδης Α, Ευσταθίου Κ. Η χημική ένωση του μήνα. Βαρφαρίνη: από ποντικοφάρμακο σε θαυματουργό φάρμακο. Διαθέσιμο http://195.134.76.37/chemicals/chem_warfarin.htm. Εκδόθηκε Μάρτιος, 2013. Επίσκεψη Μάιος 15, 2020.
43. MedlinePlus. Cytochrome P450 family 2 subfamily C member 9. Available via https://medlineplus.gov/genetics/gene/cyp2c9/. Accessed June 9, 2020.
44. Schneider KL, Kunst M, Leuchs AK, et al. Phenprocoumon Dose Requirements, Dose Stability and Time in Therapeutic Range in Elderly Patients With CYP2C9 and VKORC1 Polymorphisms. Front Pharmacol 2019; 10: 1620.
45. MedlinePlus. Vitamin K epoxide reductase complex subunit 1. Available via https://medlineplus.gov/genetics/gene/vkorc1/. Accessed June 9, 2020.
46. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinet 2009; 48(11): 689-723.
47. Μαρσέλος Μ, Λεονταρίτης Γ, Αντωνίου Α, και συν. Βιοχημική φαρμακολογία. Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. 2015 Διαθέσιμο: http://hdl.handle.net/11419/4252.
48. Tirona RG, Kim RB. Introduction to Clinical Pharmacology, Robertson D, Williams G (ed) Clinical and Translational Science (2nd Edition), Academic Press, London, United Kingdom, 2017, pp. 365-388.
49. Goetz MP, Kamal A, Ammes MM. Tamoxifen Pharmacogenomics: The Role of CYP2D6 as a Predictor of Drug Response. Clin Pharmacol Ther 2008; 83(1): 160-166.
50. Paulík A , Nekvindová J, Filip S. Irinotecan toxicity during treatment of metastatic colorectal cancer: focus on pharmacogenomics and personalized medicine. Tumori 2020; 106(2): 87-94.
51. Liu X, Cheng D, Kuang Q, Liu G, Xu W. Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenetics J 2014; 14(2): 120-129.
52. Abaji R and Krajinovic M. Thiopurine S-methyltransferase polymorphisms in acute lymphoblastic leukemia, inflammatory bowel disease and autoimmune disorders: influence on treatment response. Pharmgenomics Pers Med 2017; 10: 143–156.
53. Asadov C, Aliyeva G, Mustafayeva K. Thiopurine S-Methyltransferase as a Pharmacogenetic Biomarker: Significance of Testing and Review of Major Methods. Cardiovasc Hematol Agents Med Chem 2017; 15(1): 23–30.
54. Tamm R, Mägi R, Tremmel R, et al. Polymorphic variation in TPMT is the principal determinant of TPMT phenotype: a meta-analysis of three genome-wide association studies. Clin Pharmacol Ther 2017; 101(5): 684–695.
55. Frank JE. Diagnosis and Management of G6PD Deficiency. Am Fam Physician 2005; 72(7): 1277-1282.
56. Bubp J, Jen M, Matuszewski K. Caring for Glucose-6-Phosphate Dehydrogenase (G6PD)–Deficient Patients: Implications for Pharmacy. P T 2015; 40(9): 572–574.
57. Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. Genomics Proteomics Bioinformatics 2016; 14(5): 298-313.
58. Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 2004; 61(6): 682-699.
59. Finch A, Pillans P. P-glycoprotein and its role in drug-drug interactions. Aust Prescr 2014; 37: 137-139
60. Abraham J, Salama NN, Azab AK. The role of P-glycoprotein in drug resistance in multiple myeloma. Leuk Lymphoma 2015; 56(1): 26-33.
61. Cattaneo D, Ruggenenti P, Baldeli S, et al. ABCB1 Genotypes Predict Cyclosporine-Related Adverse Events and Kidney Allograft Outcome. J Am Soc Nephrol 2009; 20(6): 1404-1415.
62. Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 2015; 14(8): 543–560.
63. Nichols GA, Koro CE. Does Statin Therapy Initiation Increase the Risk for Myopathy? An Observational Study of 32, 225 Diabetic and Nondiabetic Patients. Clin Ther 2007; 29: 1761–1770.
64. Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med 2013; 34(4): 753-764.
65. Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic Control of Gene Regulation during Development and Disease: A View from the Retina. Prog Retin Eye Res 2018; 65: 1–27.
66. Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacology. 2013; 38(1): 23-38.
67. Sadakierska-Chudy A, Filip M. A Comprehensive View of the Epigenetic Landscape. Part II: Histone Post-translational Modification, Nucleosome Level, and Chromatin Regulation by ncRNAs. Neurotox Res 2015; 27(2): 172-197.
68. Campo CM, Martínez-Rosas M, Guarner-Lans V. Epigenetic Programming of Synthesis, Release, and/or Receptor Expression of Common Mediators Participating in the Risk/Resilience for Comorbid Stress-Related Disorders and Coronary Artery Disease. Int J Mol Sci 2018; 19(4): 1224.
69. MedlinePlus. Valproic Acid. Available via https://medlineplus.gov/druginfo/meds/a682412.html. Accessed October 30, 2020.
70. Milutinovic S, D’Alessio AC, Detich N, Szyf M. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 2007; 28(3): 560–571.
71. Genton P, Semah F, Trinka E. Valproic acid in Epilepsy. Drug Safety 2006; 29(1): 1-21.
72. Tomson T, Marson A, Boon P et al. Valproate in the treatment of epilepsy in girls and women of childbearing potential. Epilepsia 2015; 56(7): 1006-1019.
73. Εθνικός Οργανισμός Φαρμάκων. Η PRAC συστήνει νέα μέτρα για την αποφυγή της έκθεσης σε βαλπροϊκό οξύ κατά την εγκυμοσύνη. Διαθέσιμο https://www.eof.gr/c/document_library/get_file?uuid=ded174e5-b7da-436a-bb3a-6dff79c4b056&groupId=12225. Επίσκεψη Νοέμβριος 3, 2020.
74. Πατρινός ΓΠ, Μπουκουβάλα Σ (επιμ.). Φαρμακογονιδιωματική και Πρωτεϊνωματική, Τα εργαλεία της Εξατομικευμένης Ιατρικής (1η Έκδοση). Επιστημονικές Εκδόσεις Παρισιάνου, Αθήνα, Ελλάδα, 2011.
Published
2021-12-03
Section
Άρθρα ανασκόπησης